上傳資料 賺現金
2020年高考數學一輪復習教案:第3章 第7節 正弦定理、余弦定理應用舉例(含解析)
教案
加入資料籃8.5折
2020年高考數學一輪復習教案:第3章 第7節 正弦定理、余弦定理應用舉例(含解析)01
2020年高考數學一輪復習教案:第3章 第7節 正弦定理、余弦定理應用舉例(含解析)02
2020年高考數學一輪復習教案:第3章 第7節 正弦定理、余弦定理應用舉例(含解析)03
2020年高考數學一輪復習教案:第3章 第7節 正弦定理、余弦定理應用舉例(含解析)04
2020年高考數學一輪復習教案:第3章 第7節 正弦定理、余弦定理應用舉例(含解析)05
還剩5頁未讀, 繼續閱讀
下載需要10學貝
免費下載這份資料?
加入資料籃8.5折
立即下載

2020年高考數學一輪復習教案:第3章 第7節 正弦定理、余弦定理應用舉例(含解析)

展開

第七節 正弦定理、余弦定理應用舉例

[考綱傳真] 能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的實際問題.

測量中的有關幾個術語

術語名稱

術語意義

圖形表示

仰角與俯角

在目標視線與水平視線所成的角中,目標視線在水平視線上方的叫做仰角,目標視線在水平視線下方的叫做俯角

方位角

從某點的指北方向線起按順時針方向到目標方向線之間的夾角叫做方位角.方位角θ的范圍是θ360°

方向角

相對于某正方向的水平角,如北偏東α,即由正北方向順時針旋轉α到達目標方向,南偏西α,即由正南方向順時針旋轉α到達目標方向,其他方向角類似

例:(1)北偏東α

(2)南偏西α

[基礎自測]

1(思考辨析)判斷下列結論的正誤.(正確的打“√”,錯誤的打“×”)

(1)A處望B處的仰角為α,從B處望A處的俯角為β,則αβ的關系為αβ180°.????????????? ????????????? (  )

(2)俯角是鉛垂線與視線所成的角,其范圍為. (  )

(3)方位角的大小范圍是[0,2π),方向角的大小范圍一般是.(  )

(4)若點P在點Q的北偏東44°,則點Q在點P的東偏北46°. (  )

[答案] (1)× (2)× (3) (4)×

2(教材改編)海面上有ABC三個燈塔,AB10 n mile,從ACB60°視角,從BCA75°視角,則BC等于(  )

A10 n mile    B. n mile

C5 n mile   D5 n mile

D [如圖,在ABC中,

AB10A60°

B75°C45°

BC5.]

3.若點A在點C的北偏東30°,點B在點C的南偏東60°,且ACBC,則點A在點B(  )

A.北偏東15°   B.北偏西15°

C.北偏東10°   D.北偏西10°

B [如圖所示,ACB90°,又ACBC

∴∠CBA45°,而β30°

α90°45°30°15°

A在點B的北偏西15°.]

4.如圖所示,要測量底部不能到達的電視塔的高度,選擇甲、乙兩觀測點.在甲、乙兩點測得塔頂的仰角分別為45°30°,在水平面上測得電視塔與甲地連線及甲、乙兩地連線所成的角為120°,甲、乙兩地相距500 m,則電視塔的高度是(  )

A100 m   B400 m

C200 m   D500 m

D [設塔高為x m,則由已知可得

BCx mBDx m

由余弦定理可得

BD2BC2CD22BC·CDcos BCD

3x2x25002500x,解得x500(m)]

5.如圖所示,已知AB兩點分別在河的兩岸,某測量者在點A所在的河岸邊另選定一點C,測得AC50 mACB45°CAB105°,則AB兩點的距離為(  )

A50 m   B25 m

C25 m   D50 m

D [因為ACB45°CAB105°,所以B30°.由正弦定理可知,即,解得AB50 m]

測量距離問題

 

1.如圖所示,從氣球A上測得正前方的河流的兩岸BC的俯角分別為67°30°,此時氣球的高是46 m,則河流的寬度BC約等于________m(用四舍五入法將結果精確到個位.參考數據:sin 67°0.92cos 67°0.39sin 37°0.60cos 37°0.801.73)

60 [如圖所示,過AADCB

且交CB的延長線于D.

RtADC中,由AD46 mACB30°AC92 m.

ABC中,BAC67°30°37°

ABC180°67°113°AC92 m

由正弦定理,得

,即

解得BC60(m)]

2.江岸邊有一炮臺高30 m,江中有兩條船,船與炮臺底部在同一水平面上,由炮臺頂部測得俯角分別為45°60°,而且兩條船與炮臺底部連線成30°角,則兩條船相距________m.

10 [如圖,OMAOtan 45°30(m)

ONAOtan 30°×3010(m)

MON中,由余弦定理得,

MN

10(m)]

3.如圖,一艘船上午930A處測得燈塔S在它的北偏東30°的方向,之后它繼續沿正北方向勻速航行,上午1000到達B處,此時又測得燈塔S在它的北偏東75°的方向,且與它相距8 n mile.此船的航速是________n mile/h.

32 [ABS中,BAS30°ASB75°30°45°

由正弦定理得,則

AB16,故此船的船速是32 n mile/h.]

4.如圖,AB兩點在河的同側,且AB兩點均不可到達,要測出AB的距離,測量者可以在河岸邊選定兩點CD,測得CDa,同時在CD兩點分別測得BCAαACDβCDBγBDAδ.ADCBDC中,由正弦定理分別計算出ACBC,再在ABC中,應用余弦定理計算出AB.

若測得CDkmADBCDB30°ACD60°ACB45°,則AB兩點間的距離為________km.

 [∵∠ADCADBCDB60°ACD60°

∴∠DAC60°ACDC(km)

BCD中,DBC45°,由正弦定理,

BC·sinBDC·sin 30°.

ABC中,由余弦定理,得

AB2AC2BC22AC·BCcos 45°

2×××.

AB(km)

AB兩點間的距離為 km.]

[規律方法] 求距離問題的兩個策略

?1?選定或確定要創建的三角形,首先確定所求量所在的三角形,若其他量已知則直接求解;若有未知量,則把未知量放在另一確定三角形中求解.

?2?確定用正弦定理還是余弦定理,如果都可用,就選擇更便于計算的定理.

 

測量高度問題

 

【例1】 (2019·黃山模擬)如圖所示,一輛汽車在一條水平的公路上向正西行駛,到A處時測得公路北側一山頂D在西偏北30°的方向上,行駛600 m后到達B處,測得此山頂在西偏北75°的方向上,仰角為30°,則此山的高度CD______m.

100 [由題意,在ABC中,BAC30°ABC180°75°105°,故ACB45°.

AB600 m,故由正弦定理得

解得BC300 m.

RtBCD中,CDBC·tan 30°300×

100(m)]

[規律方法] 求解高度問題的3個注意點

?1?在處理有關高度問題時,要理解仰角、俯角?它是在鉛垂面上所成的角?、方向???它是在水平面上所成的角?是關鍵.

?2?在實際問題中,可能會遇到空間與平面?地面?同時研究的問題,這時最好畫兩個圖形,一個空間圖形,一個平面圖形,這樣處理起來既清楚又不容易搞錯.

?3?注意山或塔垂直于地面或海平面,把空間問題轉化為平面問題.

如圖,從某電視塔CO的正東方向的A處,測得塔頂的仰角為60°,在電視塔的南偏西60°B處測得塔頂的仰角為45°AB間的距離為35米,則這個電視塔的高度為________米.

5 [如圖,可知CAO60°AOB150°

OBC45°AB35米.

OCx米,則OAx米,OBx米.

ABO中,由余弦定理,

AB2OA2OB22OA·OB·cos AOB

352x2x2·cos 150°

整理得x5

所以此電視塔的高度是5米.]

測量角度問題

【例2】 某漁船在航行中不幸遇險,發出呼救信號,我海軍艦艇在A處獲悉后,立即測出該漁船在方位角為45°,距離A10海里的C處,并測得漁船正沿方位角為105°的方向,以10海里/時的速度向小島B靠攏,我海軍艦艇立即以10海里/時的速度前去營救,求艦艇的航向和靠近漁船所需的時間.

[] 如圖所示,設所需時間為t小時,

AB10tCB10t

ABC中,根據余弦定理,則有AB2AC2BC22AC·BC·cos 120°

可得(10t)2102(10t)22×10×10tcos 120°.

整理得2t2t10,解得t1t=-(舍去)

艦艇需1小時靠近漁船,此時AB10BC10.

ABC中,由正弦定理得sinCAB.

∴∠CAB30°.

所以艦艇航向為北偏東75°.

[規律方法] 解決測量角度問題的注意事項

?1?應明確方位角或方向角的含義.

?2?分析題意,分清已知與所求,再根據題意畫出正確的示意圖,這是最關鍵、最重要的一步.

?3?將實際問題轉化為解三角形的問題后,注意正弦、余弦定理的聯袂使用.

如圖,位于A處的信息中心獲悉:在其正東方向相距40海里的B處有一艘漁船遇險,在原地等待營救.信息中心立即把消息告知在其南偏西30°,相距20海里的C處的乙船,現乙船朝北偏東θ的方向沿直線CB前往B處救援,求cos θ的值.

[] ABC中,AB40AC20BAC120°,由余弦定理得,BC2AB2AC22AB·AC·cos 120°2 800?BC20.

由正弦定理,得?sinACB·sinBAC.

BAC120°,知ACB為銳角,則cosACB.

θACB30°,得cos θcos(ACB30°)

sinACB sin 30°.

 

免費資料下載額度不足,請先充值

每充值一元即可獲得5份免費資料下載額度

今日免費資料下載份數已用完,請明天再來。

充值學貝或者加入云校通,全網資料任意下。

提示

您所在的“深圳市第一中學”云校通為試用賬號,試用賬號每位老師每日最多可下載 10 份資料 (今日還可下載 0 份),請取消部分資料后重試或選擇從個人賬戶扣費下載。

您所在的“深深圳市第一中學”云校通為試用賬號,試用賬號每位老師每日最多可下載10份資料,您的當日額度已用完,請明天再來,或選擇從個人賬戶扣費下載。

您所在的“深圳市第一中學”云校通余額已不足,請提醒校管理員續費或選擇從個人賬戶扣費下載。

重新選擇
明天再來
個人賬戶下載
下載確認
您當前為云校通用戶,下載免費
下載需要:
本次下載:免費
賬戶余額:0 學貝
首次下載后15天內可免費重復下載
立即下載
  • 充值下載
  • 掃碼直接下載
  • 下載需要:0 學貝 賬戶剩余:0 學貝
    詳情
    學貝可用于下載教習網 400萬 精選資源 ,今日更新資源 2671
  • 詳情
    想免費下載此資料?完善資料,立得50學貝
    邀請好友助力,免費下載這份資料

    下載成功,按 Ctrl + Shift + J 查看文件保存位置

    若下載不成功,可重新下載,或查看資料下載幫助

    本次下載資源上傳者 [ETliang] 獲得現金收益 + 0.5元

    我也想賺收益

    95%的老師還下載了以下成套資源

    歡迎來到教習網

    • 400萬優選資源,讓備課更輕松
    • 600萬優選試題,支持自由組卷
    • 高質量可編輯,日均更新2000+
    • 百萬教師選擇,專業更值得信賴
    微信掃碼注冊
    qrcode

    微信掃碼,快速注冊

    注冊可領 50 學貝

    手機號注冊注冊可領 50 學貝
    手機號碼

    手機號格式錯誤

    手機驗證碼 獲取驗證碼

    手機驗證碼已經成功發送,5分鐘內有效

    設置密碼

    6-20個字符,數字、字母或符號

    注冊即視為同意教習網「注冊協議」「隱私條款」
    QQ注冊
    手機號注冊
    微信注冊

    注冊成功

    免費下載當前資料

    當前資料價值0元 下載需支付0學貝,您可以通過以下途徑免費下載

    方式一:邀請好友助力免費下載

    邀請 0 名好友關注我們即可免費下載

    微信掃一掃,將專屬邀請圖片發送給好友并關注我們,每任意邀請1人關注教習網即可獲得5學貝獎勵,獎勵秒到賬,多邀多得無上限,在個人中心可查看學貝明細

    方式二:上傳文檔換學貝免費下載

    上傳平時上課時使用的課件,教案,試卷資源換取學貝即可免費下載當前資料,還可獲取現金收益哦~了解詳情>>

    返回
    頂部
    暖暖视频在线看片